

Booster RFSum Shape

Paul Derwent
Joint PSP Task Force
13 February 2020

Booster RF Sum

- As I was out of operations for some time...
 - 'heard' how Booster RF was run
 - But I didn't understand it
 - So I started with RFSum and Station Counts - Using the Datalogger
 - 2018: > 1MV and 21 cavities
 - 2019: 925 kV and 20 cavities
 - Sampling at \$10+8 msec
 - Which is not quite the peak!
 - January 2020: 900 kV

Beamdocs #7833 documents some history on RFSum and # Cavities

And Why does it have this shape?

 Necessary Energy gain per turn is directly related to pdot, which is directly related to Bdot

- For this exercise: $p(t) = (p_f p_i)Cos(2\pi f_{ramp}t) + p_i$
 - $p_i = 954.26 \text{ MeV/c} (E_k = 400 \text{ MeV/c}^2)$
 - $p_f = 8888.89 \text{ MeV/c} (E_k = 8 \text{ GeV/c}^2)$
 - $f_{ramp} = 15 Hz$
 - Actually want Edot not pdot
 - Peak value is 595 kV at 16.67 msec
 - Accelerating voltage (Vacc) shape for a zero intensity zere emittance beam
 - Real bucket need to include the accelerating phase

$$V_{acc} = V_{rfsum} Sin(\phi_S)$$

Real Beams have emittance!

- Accelerating Bucket needs to capture all the beam
 - Bucket area which is a function of
 - Energy
 - V_{rfsum}
 - Accelerating Phase

– If fix the bucket area, have 2 equation in 2 unknowns (V_{rfsum} and ϕ_s)

Bucket Area =
$$16\sqrt{\frac{\beta^2 \to V_{rfsum}}{2\pi\omega_0^2 \text{ h } |\eta|}} \alpha(Sin(\phi_S))$$
 $V_{acc} = V_{rfsum}Sin(\phi_S)$

Nonlinear equation, used parameterization

$$\alpha(x) = \frac{1 - x}{(1 + 0.5x)^2}$$

Nota Bene: This idea is not original to me! See S. C. Snowdon, Fermilab-TM-304, May 1971 for an earlier iteration of this same calculation

Including some measurement information

- Set the bucket area below transition
- Following Ostiguy & Lebedev(*), double the bucket area above transition
- Used Mathematica to do the root finding and solve for the accelerating phase and V_{rfsum}
- Getting closer
 - peak around 5 msec
 - Falls off to transition
 - Comes up again above transition

*J.-F. Ostiguy, et al., "Modeling Longitudinal Dynamics in the Fermilab Booster Synchrotron", FERMILAB-CONF-16-162-AD, Proceedings of the 7th International Particle Accelerator Conference (IPAC2016): Busan, Korea May 8-13 2016. http://lss.fnal.gov/archive/2016/conf/fermilab-conf-16-162-ad.pdf

One more term

• Above transition, the longitudinal impedance of the Booster magnets induces a voltage of the opposite sign of the longitudinal restoring force

Need additional voltage above transition

Assuming ~uniform frequency response (not perfect but maybe reasonable)

- calculate an average value
- For beam intensity of 4.5e12

J. E. Griffin, "Aspects of operation of the Fermilab Booster RF system at very high intensity", FERMILAB-TM-1968, April 1996, https://lss.fnal.gov/archive/test-tm/1000/fermilab-tm-1968.pdf

TM 1968 Comparison

- Discussion of how to operate Booster RF for 5e13 per pulse
 - Gap Voltage
 - Beam Loading Compensation
 - Longitudinal impedance voltage > accelerating voltage
- Able to duplicate the figure for the gap voltage, given the bucket area

J. E. Griffin, "Aspects of operation of the Fermilab Booster RF system at very high intensity", FERMILAB-TM-1968, April 1996, https://lss.fnal.gov/archive/test-tm/1000/fermilab-tm-1968.pdf

Current Booster RFSum Curve

- Tuned bucket area to peak of operational curve on February 12 09:45 am (single snapshot)
 - 0.0825 eV-sec
- Caveats: working on understanding absolute calibration of B:RFSUM
 - on Jan 8 swapped BRF20 in for BRF11 and it went down by 60 kV!
 - Rephased BRF20 Feb 10
 - Peak around 925 kV (up about 40 kV)
- This approach reproduces the general shape of the curve and can be used to predict requirements for PIP-II

PIP-II Booster RFSum Curve

- For the PIP-II era
 - 0.14 eV-sec bucket area before transition
 - 1.5x greater above transition (PIP-II CDR)
 - 6.5e12 for long impedance contribution
 - Red Curve
- Simulation studies* lead to green curve
 - though have a minor misunderstanding in importing data in that I don't match transition time!
 - the simulation includes bunch rotation at the end of the cycle
- Peak 1.22 MV at 4 msec

*C.Y. Tan, et al., "The required number of wide bore cavities for PIP-II",
January 2020, https://beamdocs.fnal.gov/AD-private/DocDB/ShowDocument?
docid=7879

Accelerating Phase PIP-II era

